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Problem 35) Moving in the radial direction by Ar,
the derivative of f(z) at z, is found to be AY
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Next, we move in the azimuthal direction by
AB. The derivative of f(z) at z, is now given by
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The derivatives obtained by these two methods must be identical if the function is to be
differentiable at z = z,. Therefore,
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b) f(2) =z% = (rei?)” = \reif/?; (r=0, 0<6<2mn).
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The above derivatives are valid everywhere except at the origin, where r = 0, and on the
positive real axis, where & = 0. The reason for the latter restriction is that u(r, 8) and v(r, 8) are
discontinuous on the positive real axis and, therefore, cannot have a derivative there.

Checking the Cauchy-Riemann conditions:
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¢) The branch-cut may be taken along any line that starts at the origin and goes to infinity. In the
above discussion, this line was taken to be the positive real axis.




